(6 pages) **Reg. No. :**

Code No.: 6309 Sub. Code: PNNM 41

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

Fourth Semester

Nanoscience and Nanotechnology - Core

MAGNETIC NANOMATERIAL AND DEVICES

(For those who joined in July 2018 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

1. Magnetic permeability has Units as

(a) Tesla	(b)	Henry
-----------	-----	-------

- (c) Tesla / m (d) Henry / m
- 2. Example for magnetic material used in data storage devices.
 - (a) 45 Permalloy (b) CrO_2
 - (c) Cunife (d) Alnico

- 3. The dipole magnetic moment (μ) is directly proportional to nuclear spin(*I*), connected by a constant called the
 - (a) Gyromagnetic ratio (γ)
 - (b) Planck's constant (*h*)
 - (c) Nuclear susceptibility (χ)
 - (d) Chemical shift (δ)
- The famous experiment demonstrating how spin-^{3/2} particles can be physically separated into two groups by a magnetic field was performed in 1922 by
 - (a) Einstein (b) Heisenberg
 - (c) Stern and Gerlach (d) Planck and Dirac
- 5. Which of the following materials is paramagnetic?

(a)	Water	(b)	Fat
(c)	Bone	(d)	Air

- 6. The bulk magnetic properties of matter derive primarily from
 - (a) Protons (b) Neutrons
 - (c) Electrons (d) Whole nuclei

Page 2 Code No. : 6309

- 7. The component in an optical instrument used to increase the angular object field and to minimize aberrations is called as ______.
 - (a) Objective lens (b) Eye lens
 - (c) Field Lens (d) Plano-concave lens
- 8. Magnetic susceptibility ferromagnetic materials is
 - (a) $+10^{-5}$ (b) -10^{-5}
 - (c) 10^5 (d) 10^{-5} to 10^{-2}
- 9. Nonlinear effects which are defined by the intensity dependent refractive index of the fiber are called as _____.
 - (a) Scattering effects
 - (b) Kerr effects
 - (c) Raman effects
 - (d) Tomlinson effects
- 10. For time varying currents, the field or waves will be
 - (a) Electrostatic
 - (b) Magneto static
 - (c) Electromagnetic
 - (d) Electrical

Page 3 **Code No. : 6309**

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) What is curie temperature in magnetism?

Or

- (b) Distinguish between soft and hard magnetic material.
- 12. (a) Write short notes on Retentivity and Coercivity.

Or

- (b) What is the effect of magnetic field on Ferromagnetic materials? Give its properties.
- 13. (a) Explain: Meissner effect.

Or

- (b) Describe: Kerr effect.
- 14. (a) What are the applications of Ferrites?

Or

(b) Explain the energies involved in origin of domains in ferromagnetic materials.

Page 4 Code No. : 6309 [P.T.O.] 15. (a) Distinguish between ferromagnetic and antiferromagnetic materials.

 \mathbf{Or}

(b) Define: Hysteresis. What is meant by Hysteresis loss?

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

16. (a) Briefly explain the Classification of Magnetic Materials.

Or

- (b) Details about the Stoner Wohlfarth model.
- 17. (a) Elaborate the notes on Curie Weiss Law.

 \mathbf{Or}

- (b) Explain the working principle of electron tunneling spectroscopy.
- 18. (a) Explain: Zeeman Effect.

Or

(b) Write short notes on ferromagnetic and antiferromagnetic interfaces.

Page 5 **Code No. : 6309**

19. (a) Describe: Fermi – liquid effects.

Or

- (b) Explain the classical approach on Lorentz Microscopy.
- 20. (a) Briefly explain the basic principle and working model of electron holography.

Or

(b) What is Magnetoresistance? Explain: Giant Magnetoresistance.

Page 6 **Code No. : 6309**

Reg. No. :

Code No.: 6590 Sub. Code: ZNNM 11

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022

First Semester

Nano Science and Nano Technology - Core

MATHEMATICAL PHYSICS

(For those who joined in July 2021 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions. Choose the correct answer :

1. The inverse Laplace transform of 1/(S+1) is

(a)	e^{-2t}	(b)	et
(c)	e^{-t}	(d)	e^{2t}

2. Poison's equation is

(a)	$div E = \frac{S}{\varepsilon_0}$	(b)	curl E = J
-----	-----------------------------------	-----	------------

(c) $\nabla^2 \varphi = 0$ (d) $\nabla^2 \varphi = -p / \varepsilon_0$

(6 pages)

- 3. $\nabla_x[(e,r)e] =$ when, e = unit vector (a) 0 (b) 1
 - (c) -1 (d) None
- 4. The Laplace transform of $t^3 e^{at}$ is ———.

(a)
$$\frac{1}{(s-a)^4}$$
 (b) $\frac{2}{(s-a)^4}$

- (c) $\frac{6}{(s-a)^4}$ (d) $\frac{a}{(s-a)^4}$
- 5. The Cauchy Riemann equation is
 - (a) f(z) = f(x + iy) (b) f(z) = x / y(c) f(z) = x y (d) $f(z) = e^{ixy}$
- 6. The value of $\oint_C \frac{1}{z^2 + 4} dz$ where C | Z 2i | = 1 is
 - (a) 0 (b) 1/5
 - (c) $\pi/2$ (d) $\pi/3$
- 7. If P_n(x) is the legendre polynomial of order n then 3x² + 3x + 1 can be expressed as ______.
 (a) 2p₂ + 3P₁
 (b) 4P₂ + 2P₁ + P₀
 - (c) $3P_2 + 3P_1 + P_0$ (d) $2P_2 + 3P_1 + 2P_0$
 - Page 2 Code No. : 6590

- 8. Value of $P_n(1)$ is equal to
 - (a) 0 (b) (-1) (c) $P_n(-1)$ (d) 1

9. Give the cylindrical coordinates of the point 'p' whose Cartesian coordinates are x = 1, $y = \sqrt{3}$ and z = 4 units.

- (a) $r = 1, \varphi = 30^{\circ}, z = 4$ (b) $r = 2, \varphi = 45^{\circ}, z = 4$
- (c) $r = 2, \varphi = 60^{\circ}, z = 4$ (d) none
- 10. D' Alembert's solution of 1-D vibrating string is
 - (a) f(x-ct)
 - (b) f(x+ct)
 - (c) $f_1(x-ct) + f_2(x+ct)$
 - (d) $f_1(x ct) * f_2 = (x + ct)$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

- 11. (a) Prove that $\vec{A} : \vec{A} = A^2$ and $\vec{A} \times \vec{A} = 0$.
 - Or
 - (b) Find $\nabla(u+v)$ at the point (1, 0, -2).

Page 3 Code No. : 6590

- 12. (a) Prove $L(\sin h \, at) = \frac{a}{s^2 a^2}$. Or
 - (b) State convolution theorem for inverse Laplace transform.
- 13. (a) Determine where $f(z) = \frac{z+1}{z-1}, z \neq 1$ satisfies auchy Reimann condition.

- (b) Evaluate the following integral using Cauchy-Integral formula $\int_c \frac{4-3z}{z(z-1)(z-2)} dz$, where C is the circle |z| = 3/2.
- 14. (a) Prove Bessel function $J_{n+1}(x) = 2n/x$ $J_n(x) - J_{n-1}(x).$

- (b) Show that $P_n(-x) = (-1)^n P_n(x)$. Hence prove that $P_{m+1}(-x) = -P_{2m+1}x$.
- 15. (a) Obtain the differential equation of a vibrating string?

Or

(b) Find the solution of heat flow equation $\nabla^2 u = \frac{1}{L^2} \frac{du}{dt}$.

$$u - \frac{1}{h^2} \frac{1}{dt}$$
.

Page 4 Code No. : 6590 [P.T.O.] PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Find eigen values and eigen vectors of $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}.$ Or (b) Find $\nabla \varphi$ if (i) $\varphi = 1 n |r|$, (ii) $\varphi = \frac{1}{r}$.

17. (a) Solve the equations by Cramer's rule

$$2x - 4y + 6z = 24 4x - 5y + 8z = 39 x - 3y - 5z = -41$$

Or

(b) Find the inverse Laplace transform of the following

(i)
$$\frac{1}{s^2 - 5s - 6}$$

(ii) $\frac{2}{s^2 - 7s + 12}$
(iii) $\frac{2}{s^2 - 7s + 12}$

Page 5 **Code No. : 6590**

18. (a) State and prove Cauchy's integral formula

$$f(Z_0) = rac{1}{s^2 - 5s + 6} \int rac{f(z)dz}{z - z_0}$$
. State also the

conditions of its applicability.

Or

- (b) State and prove Cauchy's residue theorem.
- 19. (a) For Bessel's function show that $[x_n J_n(x)] = x_n J_{n-1}(x)$.

Or

- (b) Write Legendre differential equation and solve it by series integration method and prove that if $P_n(x)$ is a solution of equation then $(2_{n+1}x P_n = (n+1)P_{n+1} + nP_{n-1})$.
- 20. (a) Solution of Laplace's equation in spherical polar coordinate (r, θ, φ) .

Or

(b) Derive heat conduction equation and solve it in two dimensional Cartesian coordinates.

Page 6 **Code No. : 6590**

(6 pages) **Reg. No. :**

Code No.: 6591 Sub. Code : ZNNM 12

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

First Semester

Nanoscience and Technology — Core

QUANTUM MECHANICS

(For those who joined in July 2021 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

1. The de Broglie wavelength of matter wave is

- (a) hp (b) hmv
- (c) $\frac{h}{p}$ (d) $\frac{h}{4p}$

2. The average lifetime of an atom in excited state is

(a)	$1 \times 10^{-3} \sec$	(b)	$1 \times 10^5 m sec$
(c)	$1 \times 10^{-8} \sec$	(d)	1×10^3 sec

- 3. For the bound state of a particle in a square well the energy is
 - (a) $\mathbf{E} = 0$ (b) $\mathbf{E} = \alpha$
 - (c) E < 0 (d) E > 0
- 4. Any wave function having symmetry property is said to be of <u>parity</u>
 - (a) Zero (b) Even
 - (c) Odd (d) Infinite
- 5. If there exists only one eigen function corresponding to a given eigen value then they are
 - (a) Nondegenerate (b) degenerate
 - (c) discrete (d) Continuous
- - (a) numerical (b) homogeneous
 - (c) nonlinear (d) none
 - Page 2 Code No. : 6591

- 7. Stark effect is the splitting of a spectral line in the presence of
 - (a) Electric field (b) Magnetic field
 - (c) Inert environment (d) Vacuum
- - (a) Lowest (b) Highest
 - (c) Zero (d) None
- 9. When the torque acting on a rotating body is zero then what will remain constant?
 - (a) force
 - (b) linear momentum
 - (c) angular momentum
 - (d) all the above
- 10. Particles with an integer spin are called
 - (a) fermions (b) bosons
 - (c) electrons (d) protons
 - Page 3 **Code No. : 6591**

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Derive an expression for de-Broglie wavelength.

Or

- (b) Write the properties of the wave function.
- 12. (a) What are the postulates of quantum mechanics?

Or

- (b) State and explain kronig penning model.
- 13. (a) What are the properties of a self-adjoint operator?

 \mathbf{Or}

- (b) Write a note on the Dirac delta function.
- 14. (a) Explain the stark effect in detail.

Or

(b) Explain the first order perturbation theory.

An
$$(1) = -\frac{}{(E_m - E_n)}$$

Page 4	Code No. : 6591
	[P.T.O.]

15. (a) Define spin angular momentum.

Or

(b) Write a note on the normalization of the Eigen function.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

16. (a) Obtain one-dimensional Schrodinger equations for a free particle.

 \mathbf{Or}

- (b) Derive an expression for time independent Schrodinger equation.
- 17. (a) Discuss the quantum mechanical barrier penetration through a 1-D square well potential barriers.

 \mathbf{Or}

- (b) State and prove Ehrenfest's theorem.
- 18. (a) Write a note on completeness and normalization of an eigen function.

Or

(b) Derive the expression for angular momentum in the spherical-coordinate system.

Page 5 **Code No. : 6591**

19. (a) Explain Zeeman effects. What are its typesexplain?

 \mathbf{Or}

- (b) Explain second order perturbation theory in detail.
- 20. (a) Explain the effect of an electric field on the energy level of atom by stark effect.

Or

(b) Obtain the Clebsch Gordan coefficient for the partied $j_1 = 1/2$ and $j_2 = 1/2$.

Page 6 **Code No. : 6591**

(6 pages) **Reg. No. :**

Code No.: 6592 Sub. Code : ZNNM 13

M.Sc. (CBCS). DEGREE EXAMINATION, NOVEMBER 2022.

First Semester

Nanoscience and Nanotechnology - Core

SOLID STATE PHYSICS

(For those who joined in July 2021 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

- 1. The number of atoms per unit cell for an FCC crystal structure is
 - (a) 2 (b) 4
 - (c) 6 (d) 8
- 2. The number of atoms per unit cell in BCC is
 - (a) 2 (b) 4
 - (c) 6 (d) 8

- 3. Which of the following is a characteristic property of is nickel compounds?
 - (a) They form hard, brittle crystals
 - (b) They have low melting points
 - (c) They have low boiling points
 - (d) They contain no charged particles
- 4. Elastic waves in crystals are made up of
 - (a) Photons (b) Nanoparticles
 - (c) Atoms (d) Phonons
- 5. If σ is the conductivity. What is the relation between the electric field E and the current density J in a conducting medium?
 - (a) $\sigma = J/E$ (b) $\sigma = 1/JE$
 - (c) $\sigma = E / J$ (d) $\sigma = EJ$
- 6. Hall effects can be used to measure
 - (a) Electric field intensity
 - (b) Magnetic field intensity
 - (c) Carrier concentration
 - (d) None of these

Page 2 Code No. : 6592

- 7. A p-type semiconductor is
 - (a) positively charged (b) negatively charged
 - (c) electrically neutral (d) none
- 8. In a thermopile, number of thermocouples are connected in
 - (a) series
 - (b) parallel
 - (c) either series parallel
 - (d) none
- 9. Material exhibiting zero values of resistivity are known as
 - (a) conductors (b) semi-conductors
 - (c) Insulators (d) super conductors
- 10. In ______ effects current persists for a longer time
 - (a) DC Josephson (b) AC Josephson
 - (c) Both (a) and (b) (d) None
 - Page 3 Code No. : 6592

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) What are miller indices. Explain with an example. Explain quasicrystals?

Or

- (b) Explain Brillouin Zones.
- 12. (a) What are lonic crystals Explain?

Or

- (b) Define the vibration of crystals with a monoatomic basic.
- (a) Derive an expression for the energy level of a free electron gas in 3-D.

 \mathbf{Or}

- (b) Obtain an expression for electrical conductivity and hence arrive ohm's law.
- 14. (a) Explain thermo-electric effects.

 \mathbf{Or}

(b) What do you mean by optical reflectance? Explain the pheonomenon in detail.

> Page 4 Code No. : 6592 [P.T.O.]

15. (a) What are Type II superconductor? Explain its characteristics.

 \mathbf{Or}

(b) What are the properties of superconductors?

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

16. (a) Explain in detail about BCC structure and derive its parameters.

Or

- (b) What are covalent crystals. Explain covalent crystals in detail.
- 17. (a) What is scattering? Explain Inelastic scattering by phonons.

Or

- (b) Explain the Quantization of elastic waves.
- 18. (a) Derive an expression for the density of state in a free electron gas in 3-D.

Or

(b) Explain the Hall effect in detail.

Page 5 **Code No. : 6592**

19. (a) Explain n-type and p-type semiconductors with examples.

 \mathbf{Or}

- (b) Explain Intrinsic carrier concentration and derive expression for it.
- 20. (a) What is the Josephson effect? Explain AC Josephson effect.

Or

(b) What is BCS theory? Explain its features.

Page 6 **Code No. : 6592**

(6 pages) **Reg. No. :**

Code No.: 6593 Sub. Code: ZNNM 14

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

First Semester

Nano Science and Nanotechnology

ELECTRONICS

(For those who joined in July 2021 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

- 1. The branch of algebra in which the Va lues of the variables are the truth values true and false usually denoted by ______ and _____ respectively.
 - (a) 1,0
 - (b) 1,2
 - (c) 2,3
 - (d) 3,4

2.	Boolean algebra is used as a tool for the analysis and design of circuits.		
	(a) Basic	(b)	Logic
	(c) Digital	(d)	Numeral
3.	Elaborate SOP		
	(a) Symbol of product	(b)	Sum of product
	(c) State of product	(d)	None of the above
4.	Full form of POS is		
	(a) Product of sum	(b)	Possibility of sum
	(c) All the above	(d)	None of the above
5.	In a loop the output attempts to do whatever is necessary to make the voltage difference the inputs zero.		
	(a) Open	(b)	Infinte
	(c) Positive	(d)	Closed
6.	Real Op amps in various aspects.		_ from the ideal model
	(a) Same	(b)	Differ
	(c) May be same	(d)	All the above
	Pag	e 2	Code No. : 6593

- 7. The comparators negative input is connected to voltage dividers upper reference voltage and the comparators positive inputs is connected to
 - (a) Threshold (b) Infinity
 - (c) Trigger (d) Comparator
- 8. The comparator positive input is connected to voltage divider lower reference and the comparators negative input is connected to
 - (a) Comparator (b) Flip-flop
 - (c) Trigger (d) Thershold
- 9. Device which perform an output function are generally called _____.
 - (a) Sensors (b) Transducers
 - (c) Signals (d) Actuators
- 10. All types of sensors can be closed as two kinds either passive sensor or _____.
 - (a) Actuator
 - (b) Transducers

------•

- (c) Active
- (d) All the above

Page 3 **Code No. : 6593**

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

 (a) Discuss the logic gates with symbols truthtables circuit diagram and working of AND and OR gates.

Or

- (b) Explain the logic gates with symbols truthtables circuit diagram and working of EX-OR and EX-NOR gates.
- 12. (a) Construct the implemendation of SOP using NAND and NOR gates.

Or

- (b) Express the implementation of POS using NAND and NOR gates.
- 13. (a) Explain instrumentation amplifier with a schematic diagram.

Or

(b) Discuss an operational amplifier and OP amp differentiator.

Page 4 **Code No. : 6593**

14. (a) Describe the schematic diagram of monostable operation and explain its functions and applications.

Or

- (b) Illustrate the schematic diagram of pstable operation and explain its functions and applictions?
- 15. (a) Express Op-amp based feedback amp with a neat schematic diagram.

Or

(b) Compare transducer and sensors with example.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b)

16. (a) Prove De-morgans theorem.

Or

- (b) State and prove Boolean algebras theorem.
- 17. (a) Discriminate SOP and POS in digital logic.

Or

- (b) (i) Justify K-map with significant example.
 - (ii) Discuss the variable in K-map.

Page 5 Code No. : 6593

 (a) Construct the diagram of IC OP amp 741 and explain the functionality of each pins.

 \mathbf{Or}

- (b) Summarize the applications of OP amp.
- 19. (a) Illustrate the pin diagram, working of IC555 timer with neat diagram.

Or

- (b) Estimate the functions of VCO with schematic diagram and applications.
- 20. (a) Give a brief note on impedance matching with a schematic diagram.

Or

(b) Elaborate in detail what is signal conditioning and recovery.

Page 6 **Code No. : 6593**

(6 pages) **Reg. No. :**

Code No.: 6598 Sub. Code : ZNNM 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

Third Semester

Nanoscience and Nanotechnology - Core

CHARACTERIZATION OF NANOMATERIALS

(For those who joined in July 2021 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

- 1. The detector in x-ray diffraction that detects the visible radiation is
 - (a) proportional counter (b) silicon counter
 - (c) Galay detector (d) slintillation counter
- 2. X-rays are generated by
 - (a) Geiger tube (b) Goniometer
 - (c) Coolidge tube (d) Rotumeter

3.		red by a material to subjected to external laud	
	(a) resistivity	(b) resilience	
	(c) stress	(d) strain	
4.	The compressive residual stress ———————————————————————————————————		
	(a) Increases	(b) decreases	
	(c) does not change	(d) no relation	
5.	Electron microscope can	give a magnification upto	
	(a) 400,000 X	(b) 100,000 X	
	(c) 15000 X	(d) 100 X	
6.	The secondary electrons radiated back in scanning microscope is collected by?		
	(a) specimen	(b) anode	
	(c) vacuum chumber	(d) cathode	
7.	The colour of the nanogold particle is ———		
	(a) yellow	(b) orange	
	(c) red	(d) variable	
	Page	2 Code No. : 6598	

- 8. The first talk about nano-technology was given by
 - (a) Albert Einstein (b) Neutron
 - (c) Gordon E. Moore (d) Richard Feynman
- 9. Select the wavelength range corresponding to UV-visible region.
 - (a) 400 800 nm (b) 200 800 nm
 - (c) 0.25 um 2.5 um (d) 2.5 um 1 mm
- 10. The possible transitions for water molecule in UVvisible region are
 - (a) $\sigma \sigma *$ (b) $n \to \pi *, \pi \to \pi *$
 - (c) $\sigma \sigma^*, n \to \pi^*$ (d) $n \to \sigma^*$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Explain the dislocation density micro strain.

Or

- (b) Explain in detail about neutron diffraction.
- 12. (a) Explain the micro hardness technique.

Or

(b) Discuss about the nano indentation.

Page 3 Code No. : 6598

13. (a) Explain the scanning probe microscopy.

Or

- (b) Describe the construction and working of transmission electron microscope.
- 14. (a) Explain the properties of light and nanotechnology.

 \mathbf{Or}

- (b) Explain the photonic crystals.
- 15. (a) Explain the applications of photoluminescence spectrometer.

Or

(b) Explain the antimicrobial studies.

PART C — $(5 \times 8 = 40 \text{ marks})$

- Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.
- 16. (a) Explain the compassion of X-ray and neutron powder pattern.

 \mathbf{Or}

(b) Describe the macromolecular crystallography using synchrotron radiation.

Page 4 Code No. : 6598

[P.T.O.]

17. (a) Explain the glass transition and relaxation behaviour.

\mathbf{Or}

- (b) Discuss the abrasion and wear resistance superplasticity.
- (a) Explain the construction and working of scanning electron microscope.

Or

- (b) Describe the construction and working of STM.
- 19. (a) Explain the absorbance, surface plasma excitation and size dependent PL.

Or

(b) Discuss the waveguide and control of light paths.

Page 5 **Code No. : 6598**

20. (a) Explain the working and applications of FTIR spectrometer.

Or

(b) Describe the working of UV-Vis-NIR spectrometer.

Page 6 **Code No. : 6598**

(6 pages) **Reg. No. :**

Code No.: 6599 Sub. Code: ZNNM32

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

Third Semester

Nanoscience and Nanotechnology

NANOELECTRONICS

(For those who joined in July 2021 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

1. Nanomaterials are the materials with at least one dimension measuring less than ———

(a) 1 nm (b) 10 nm

(c) 100 nm (d) 1000 nm

- 2. The melting point of particles in nanoform
 - (a) Increases (b) Decreases
 - (c) Remains same (d) None of the above
- 3. Time taken for a diode to reach 90% at its final value when switched from steady state is
 - (a) 2.3^* time constant
 - (b) 2.2^* time constant
 - (c) 1.5^* time constant
 - (d) equals the time constant
- 4. The time constant of a series RL circuit (τ) is given by

(a) $\frac{R}{L}$	(b)	$\frac{L}{R}$
(c) RC	(d)	$\frac{1}{RL}$

- 5. Quantum dots are in nature.
 - (a) inorganic (b) organic
 - (c) biologic (d) metallic
 - Page 2 **Code No. : 6599**

6.	The polymeric nan	oparticles come under		
	dimensational nanomaterials?			
	(a) zero	(b) one		
	(c) two	(d) three		
7.	Subtraction in computers is carried out by			
	(a) 1's complement	(b) 2's complement		
	(c) 3's complement	(d) 4's complement		
8.	Which of the architecture is power efficient?			
	(a) RISC	(b) ISA		
	(c) IANA	(d) CISC		
9.	What are sunglasses made of?			
	(a) Colored glasses	(b) Tin glass		
	(c) Silica	(d) Polaroids		
10.	Spinpolarized light can be produced by			
	(a) Nicol prison	(b) NaCl crystal		
	(c) Biprisan	(d) None of these		

Page 3 Code No. : 6599

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Explain the introduction of nanoelectronics.

 \mathbf{Or}

- (b) Discuss about the future application of nanoelectronics.
- 12. (a) Discuss about the basic concept of molecular electronic components.

Or

- (b) Explain the characterization of switches.
- 13. (a) Describe the existence of quantum dots.

Or

- (b) Explain the concept at quantum wires.
- 14. (a) Describe the working of single electron circuits.

Or

(b) Explain the molecular circuits.

Page 4 **Code No. : 6599**

[P.T.O.]

15. (a) Explain the process of spinpolarization.

Or

(b) Explain the working of spindiodes.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

16. (a) Explain the overview of basic nanolectronics.

Or

- (b) Explain the tools for micro and nanofabrication.
- 17. (a) Explain the complex molecular devices.

Or

- (b) Explain the polyphenylene based molecular rectifying diode switches.
- 18. (a) Explain the quantum mechanical tunnel diodes.

 \mathbf{Or}

- (b) Explain the nanoelectronics and nanotechnology.
- 19. (a) Explain the quantum dot cellular automata.

 \mathbf{Or}

(b) Explain the nanocomputer architecture.

Page 5 Code No. : 6599

20. (a) Explain the spintronics devices and applications.

Or

(b) Explain the working of spin transistors.

Page 6 **Code No. : 6599**

(6 pages) **Reg. No. :**

Code No.: 6600 Sub. Code : ZNNM 33

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

Third Semester

Nano Science and Nano Technology - Core

BASIC OF NANOBIOTECHNOLOGY

(For those who joined in July 2021 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

1. The art and science of etching writing or printing the microscopic level in the order of nanometer is

- (a) NEMs (b) Nanolithography
- (c) Nanofabrication (d) Nanopalteinins

- 2. Which of the following nanomaterials contains a hydrophilic peptide head group and one or more hydrophic alkyl tails?
 - (a) Lipoproteins (b) Peptide amphiphiles
 - (c) Micelles (d) Carbon nanotubes
- 3. Which of the following method employs changes in polarized light to determine film thinkness?
 - (a) Surface tensiometry
 - (b) Particle size analyzer
 - (c) Ellipsometry
 - (d) AFM
- 4. Which is an example of top down approach for the approach of nanomaterials?
 - (a) Gas phase agglomeration
 - (b) Molecular self assembly
 - (c) Mechanical grinding
 - (d) Molecular beam epitaxy
- 5. The bioremediation process involving the usuage of plants to degrade pollutants is
 - (a) Compositing (b) Biopile
 - (c) Phytoremediation (d) Land Farming

Page 2 **Code No. : 6600**

- 6. Which of the following is the physico-chemical component?
 - (a) Enzymes (b) Antibodies
 - (c) Transducers (d) Cells or tissues
- 7. This particulate system is also known as "bodies of water"
 - (a) Aquasome (b) Liposome
 - (c) Niosome (d) Dendrime
- 8. A lipid bilayer structure that encloses an internal aqueous volume
 - (a) Niosome
 - (b) Liposome
 - (c) Solid lipid nanoparticle
 - (d) Nanoparticle
- 9. Which of the following are applications of quantum dots?
 - (a) Immunolabeling and fluorescence imaging
 - (b) Drug delivery
 - (c) An tag for other drug carries
 - (d) All the above

Page 3 Code No. : 6600

- 10. Structures that have thickness or diameter constrained to lens of nms or less and an unconstrained length are called as
 - (a) Nanotubes (b) Nanowires
 - (c) Nanocrystals (d) Buckyballs

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Outline applications of Nanobiotechnology.

Or

- (b) Discuss briefly nanopore technology.
- 12. (a) Write the characteristics of Self Assembles Monolayer (SAM).

 \mathbf{Or}

- (b) Discuss briefly Electron beam Lithography.
- 13. (a) Write a note on Nanoclusters.

Or

(b) Outline the application of Biosensor.

Page 4 Code No. : 6600 [P.T.O] 14. (a) Describe immuno modulators drugs.

Or

- (b) Discuss how can we design nanocarrier for oral drug delivery.
- 15. (a) Describe Quantum dots for live cells.

Or

(b) Explain what happens during sentinel lymph node mapping.

PART C — $(5 \times 8 = 40 \text{ marks})$

- Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.
- 16. (a) Explain production of inorganic nanoparticles and its applications.

 \mathbf{Or}

- (b) Define terms :
 - (i) Nanoparticles
 - (ii) Nanospheres
 - (iii) Nano capsules.

Page 5 **Code No. : 6600**

17. (a) Discuss briefly organic nanomaterials with examples.

Or

- (b) Explain the types of self assembled nanostructure.
- 18. (a) Explain DNA aptamers.

Or

- (b) Explain the fabrication of Biosensor.
- 19. (a) Explain vaccines in drug carrier Nanotherapeutics.

 \mathbf{Or}

- (b) Define Nanopesticides and Nanofertilizers.
- 20. (a) Explain a biomagnetic systems for in VIVO cancer imaging.

Or

(b) Explain Invivo imaging system.

Page 6 **Code No. : 6600**

(6 pages) **Reg. No. :**

Code No.: 6601 Sub. Code : ZNNM 34

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

Third Semester

Nano Science and Nano Technology - Core

RESEARCH METHODOLOGY

(For those who joined in July 2021 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

- 1. Who was the author of the book named "Methods in social research"?
 - (a) Kerlinger (b) CR Kothari
 - (c) Goode and Hatt (d) Wilkinson

- 2. In order to pursue the research, which of the following is priorly required?
 - (a) Developing a research design
 - (b) Formulating a research question
 - (c) Deciding about the data analysis procedure
 - (d) Formulating a research hypothesis
- 3. Which is related to some abstract ideas or theory?
 - (a) Contextual research
 - (b) Conceptual research
 - (c) Ideal research
 - (d) Emprical research
- 4. The research is concerned with qualitative phenomena
 - (a) Qualitative (b) Descriptive
 - (c) Quantitative (d) Numerical
- 5. The name of the conceptual framework in which the research is carried out
 - (a) Research design (b) Research paradigm
 - (c) Synopsis of research (d) Research hypothesis

Page 2 Code No. : 6601

- 6. The format of thesis writing is the same as in
 - (a) Writing of seminar representation
 - (b) Preparation of research paper/article
 - (c) A research dissertation
 - (d) Presenting a workshop / conference paper
- 7. What is presented in the findings section of a research report?
 - (a) A discussion of the results
 - (b) The quantitative or qualitative data that was collected
 - (c) The theoretical foundations for the research study
 - (d) The methods that we are used to collect the data
- 8. The conclusion of a research report
 - (a) Can introduce new information
 - (b) Must be based only on material presented in the report
 - (c) Same as the abstract except that it is presented at the end of the report
 - (d) Should focus only on the findings of the research

Page 3 Code No. : 6601

- 9. The act of presenting some one else's work or idea own considered as
 - (a) Plagiarism
 - (b) Academic dishonesty
 - (c) Wrongful appropriation
 - (d) All of these
- 10. Which of the following software is paid software for checking the similarity index in a research paper
 - (a) Viper (b) Plag truck
 - (c) Urkund (d) Copy leaks

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Outline the objectives of research.

Or

- (b) Write criteria of good research.
- 12. (a) Explain conceptualization in research survey of literature.

Or

(b) Explain the significance of primary data.

Page 4 Code No. : 6601 [P.T.O] 13. (a) Write the features of a good research design.

Or

- (b) Discuss the concepts relating to research design.
- 14. (a) Explain data collection tool and data analysis in reporting research.

 \mathbf{Or}

- (b) Write short notes on foot notes and bibliography.
- 15. (a) Write the fundamental ethical principles in research.

Or

(b) Write note on plagiarism in research journals.

PART C — $(5 \times 8 = 40 \text{ marks})$

- Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.
- 16. (a) List out the steps involved in research process.

 \mathbf{Or}

(b) Explain Quantitative Vs Qualitative research.

Page 5 Code No. : 6601

17. (a) Explain the steps in formulating the research problem.

Or

- (b) Describe the important steps in writing an effective literature review.
- (a) What is research design? Explain the concept of research design and what area the types research design.

Or

- (b) Explain the importance of research design.
- 19. (a) Define research report. Explain the essentials of a good research report.

 \mathbf{Or}

- (b) Explain the types of report research.
- 20. (a) Explain why is ethics important in research and publication.

Or

(b) Explain intellectual property right stand patent law.

Page 6 **Code No. : 6601**